skip to main content


Search for: All records

Creators/Authors contains: "Jevon, Fiona V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Yavitt, Joseph B. (Ed.)
    Conspecific negative density dependence (CNDD) promotes tree species diversity by reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens, or competitors. While this process is well-described in tropical forests, tests of temperate tree species range from strong positive to strong negative density dependence. To explain this, several studies have suggested that tree species traits may help predict the strength and direction of density dependence: for example, ectomycorrhizal-associated tree species typically exhibit either positive or weaker negative conspecific density dependence. More generally, the strength of density dependence may be predictably related to other species-specific ecological attributes such as shade tolerance, or the relative local abundance of a species. To test the strength of density dependence and whether it affects seedling community diversity in a temperate forest, we tracked the survival of seedlings of three ectomycorrhizal-associated species experimentally planted beneath conspecific and heterospecific adults on the Prospect Hill tract of the Harvard Forest, in Massachusetts, USA. Experimental seedling survival was always lower under conspecific adults, which increased seedling community diversity in one of six treatments. We compared these results to evidence of CNDD from observed sapling survival patterns of 28 species over approximately 8 years in an adjacent 35-ha forest plot. We tested whether species-specific estimates of CNDD were associated with mycorrhizal association, shade tolerance, and local abundance. We found evidence of significant, negative conspecific density dependence (CNDD) in 23 of 28 species, and positive conspecific density dependence in two species. Contrary to our expectations, ectomycorrhizal-associated species generally exhibited stronger (e.g., more negative) CNDD than arbuscular mycorrhizal-associated species. CNDD was also stronger in more shade-tolerant species but was not associated with local abundance. Conspecific adult trees often have a negative influence on seedling survival in temperate forests, particularly for tree species with certain traits. Here we found strong experimental and observational evidence that ectomycorrhizal-associating species consistently exhibit CNDD. Moreover, similarities in the relative strength of density dependence from experiments and observations of sapling mortality suggest a mechanistic link between negative effects of conspecific adults on seedling and sapling survival and local tree species distributions. 
    more » « less
  4. null (Ed.)
    ●Fine roots and mycorrhizal fungi may either stimulate leaf litter decomposition by providing free‐living decomposers with root‐derived carbon, or may slow decomposition through nutrient competition between mycorrhizal and saprotrophic fungi. ●We reduced the presence of fine roots and their associated mycorrhizal fungi in a northern hardwood forest in New Hampshire, USA by soil trenching. Plots spanned a mycorrhizal gradient from 96% arbuscular mycorrhizal (AM) associations to 100% ectomycorrhizal (ECM)‐associated tree basal area. We incubated four species of leaf litter within these plots in areas with reduced access to roots and mycorrhizal fungi and in adjacent areas with intact roots and mycorrhizal fungi. ●Over a period of 608 d, we found that litter decayed more rapidly in the presence of fine roots and mycorrhizal hyphae regardless of the dominant tree mycorrhizal association. Root and mycorrhizal exclusion reduced the activity of acid phosphatase on decomposing litter. ●Our results indicate that both AM‐ and ECM‐associated fine roots stimulate litter decomposition in this system. These findings suggest that the effect of fine roots and mycorrhizal fungi on litter decay in a particular ecosystem likely depends on whether interactions between mycorrhizal roots and saprotrophic fungi are antagonistic or facilitative. 
    more » « less
  5. Recent work suggests mycorrhizal fungi are important drivers of soil organic matter dynamics; however, whether this is a result of the fungi themselves or related traits of their host trees remains unclear. We evaluated how tree mycorrhizal associations and foliar chemistry influence mineral-associated organic matter (MAOM) and particulate organic matter (POM) in temperate forests of northern New England, USA. We measured carbon (C) and nitrogen (N) concentrations and C:N of three soil density fractions beneath six tree species that vary in both mycorrhizal association and foliar chemistry. We found a significant decline in the concentration of MAOM C and N with increasing foliar C:N in soil beneath tree species with arbuscular mycorrhizal (AM), but not ectomycorrhizal (ECM) fungi. The C:N of POM and MAOM was positively associated with the foliar C:N of the dominant tree species in a forest, and MAOM C:N was also higher beneath ECM- rather than AM-associated tree species. These results add to the growing body of support for mycorrhizal fungi as predictors of soil C and N dynamics, and suggest that C concentration in the MAOM fraction is more sensitive to organic matter chemistry beneath AM-associated tree species. Because MAOM decomposition is thought to be less responsive than POM decomposition to changes in soil temperature and moisture, differences in the tendency of AM- vs. ECM-dominated forests to support MAOM formation and persistence may lead to systematic differences in the response of these forest types to ongoing climate change. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  6. null (Ed.)
    Soil organic matter (SOM) stocks, decom- position and persistence are largely the product of controls that act locally. Yet the controls are shaped and interact at multiple spatiotemporal scales, from which macrosystem patterns in SOM emerge. Theory on SOM turnover recognizes the resulting spatial and temporal conditionality in the effect sizes of controls that play out across macrosystems, and couples them through evolutionary and community assembly pro- cesses. For example, climate history shapes plant functional traits, which in turn interact with contem- porary climate to influence SOM dynamics. Selection and assembly also shape the functional traits of soil decomposer communities, but it is less clear how in turn these traits influence temporal macrosystem patterns in SOM turnover. Here, we review evidence that establishes the expectation that selection and assembly should generate decomposer communities across macrosystems that have distinct functional effects on SOM dynamics. Representation of this knowledge in soil biogeochemical models affects the magnitude and direction of projected SOM responses under global change. Yet there is high uncertainty and low confidence in these projections. To address these issues, we make the case that a coordinated set of empirical practices are required which necessitate (1) greater use of statistical approaches in biogeochem- istry that are suited to causative inference; (2) long- term, macrosystem-scale, observational and experi- mental networks to reveal conditionality in effect sizes, and embedded correlation, in controls on SOM turnover; and (3) use of multiple measurement grains to capture local- and macroscale variation in controls and outcomes, to avoid obscuring causative understanding through data aggregation. When employed together, along with process-based models to synthesize knowledge and guide further empirical work, we believe these practices will rapidly advance understanding of microbial controls on SOM and improve carbon cycle projections that guide policies on climate adaptation and mitigation. 
    more » « less
  7. Soil respiration is the dominant pathway by which terrestrial carbon enters the atmosphere. Many abiotic and biotic processes can influence soil respiration, including soil microbial community composition. Mycorrhizal fungi are a particularly important microbial group because they are known to influence soil chemistry and nutrient cycling, and, because the type of mycorrhizal fungi in an ecosystem can be assessed based on the plant species present, they may be easier than other soil microbes to incorporate into ecosystem models. We tested how the type of mycorrhizal fungi—arbuscular (AM) or ectomycorrhizal (ECM) fungi—associated with the dominant tree species in a mixed hardwood forest was related to soil respiration rate. We measured soil respiration, root biomass, and surface area, and soil chemical and physical characteristics during the growing season in plots dominated by ECM-associated trees, AM-associated trees, and mixtures with both. We found rates of soil respiration that were 29% and 32% higher in AM plots than in ECM and mixed plots, respectively. These differences are likely explained by the slightly higher nitrogen concentrations and deeper organic horizons in soil within AM plots compared with soil in ECM and mixed plots. Our results highlight the importance of considering mycorrhizal associations of dominant vegetation as predictors of carbon cycling processes. Key words: Soil respiration; Mycorrhizal fungi; Carbon; Microbial activity; CO2; Northern hardwood forest. 
    more » « less